$0\nu\beta\beta$ in effective field theory and simplified models

Wouter Dekens

With: Jordy de Vries & Richard Ruiz

UC San Diego

- Very sensitive probe of lepton number violation
- Stringently constrained experimentally

$T_{1/2}^{0\nu}(^{76}{ m Ge})$	$T_{1/2}^{0\nu}(^{130}\mathrm{Te})$	$T_{1/2}^{0\nu}(^{136}\mathrm{Xe})$
$>9\cdot 10^{25}\mathrm{yr}$	$> 3.2 \cdot 10^{25} \mathrm{yr}$	$> 1.1 \cdot 10^{26} \text{yr}$

• To be improved by 1-2 orders

- Very sensitive probe of lepton number violation
- Stringently constrained experimentally

$T_{1/2}^{0\nu}(^{76}{ m Ge})$	$T_{1/2}^{0\nu}(^{130}\mathrm{Te})$	$T_{1/2}^{0\nu}(^{136}\mathrm{Xe})$
$> 9 \cdot 10^{25} \text{yr}$	$> 3.2 \cdot 10^{25} \mathrm{yr}$	$> 1.1 \cdot 10^{26} \text{yr}$

To be improved by 1-2 orders

Measurement would tell us:

- There's physics beyond the SM
- Neutrinos are Majorana particles

Have implications for

- Neutrino mass mechanism
- Leptogenesis

- Very sensitive probe of lepton number violation
- Stringently constrained experimentally

$T_{1/2}^{0\nu}(^{76}\mathrm{Ge})$	$T_{1/2}^{0\nu}(^{130}\mathrm{Te})$	$T_{1/2}^{0\nu}(^{136}\mathrm{Xe})$
$> 9 \cdot 10^{25} \text{yr}$	$> 3.2 \cdot 10^{25} \text{yr}$	$> 1.1 \cdot 10^{26} \text{yr}$

To be improved by 1-2 orders

Measurement would tell us:

- There's physics beyond the SM
- Neutrinos are Majorana particles

Have implications for

- Neutrino mass mechanism
- Leptogenesis

Not which LNV source is responsible

Many possible mechanisms:

Hard to disentangle using 0vββ alone

- Very sensitive probe of lepton number violation
- Stringently constrained experimentally

$$T_{1/2}^{0\nu}(^{76}\text{Ge})$$
 $T_{1/2}^{0\nu}(^{130}\text{Te})$ $T_{1/2}^{0\nu}(^{136}\text{Xe})$
> $9 \cdot 10^{25} \,\text{yr}$ > $3.2 \cdot 10^{25} \,\text{yr}$ > $1.1 \cdot 10^{26} \,\text{yr}$

Complementarity between $0\nu\beta\beta$ and energy frontier is important

Measureme Collider probes could provide information on the LNV source

- There's physics beyond the SM
- Neutrinos are Majorana particles

Have implications for

- Neutrino mass mechanism
- Leptogenesis

Hard to disentangle using 0vββ alone

- Many LNV models imply signals in 0vββ and at colliders
 - For example, in the Left-Right model:

- Many LNV models imply signals in 0vββ and at colliders
 - For example, in the Left-Right model:

Low-energy process

Conveniently described using EFTs

- Many LNV models imply signals in 0vββ and at colliders
 - For example, in the Left-Right model:

Low-energy process

Conveniently described using EFTs

- High-energy processes, $\sqrt{s} \sim \text{few TeV}$
 - Must keep new states $m_{\rm BSM} \lesssim \sqrt{s}$
- Have to consider specific BSM models

- Many LNV models imply signals in 0vββ and at colliders
 - For example, in the Left-Right model:

Low-energy process

Conveniently described using EFTs

- High-energy processes, $\sqrt{s} \sim {\rm few \, TeV}$
 - Must keep new states $m_{\rm BSM} \lesssim \sqrt{s}$
- Have to consider specific BSM models
- Goal: translate between the *EFT* and *model* description for several simplified scenarios
 - Assess the interplay 0vββ between and colliders

- Consider several Simplified or Full models
 - Perform analysis of collider signatures within these models
 - Translate to the EFT and use it to describe $0
 u\beta\beta$

- Consider several Simplified or Full models
 - Perform analysis of collider signatures within these models
 - Translate to the EFT and use it to describe $0
 u\beta\beta$

Framework developed in V. Cirigliano et al, '17, '18, WD et al '20

- Consider several Simplified or Full models
 - Perform analysis of collider signatures within these models
 - Translate to the EFT and use it to describe $0
 u\beta\beta$

Framework developed in V. Cirigliano et al, '17, '18, WD et al '20

• New step: matching of the simplified models onto the (ν) SMEFT

- Consider several Simplified or Full models
 - Perform analysis of collider signatures within these models
 - Translate to the EFT and use it to describe $0
 u\beta\beta$
 - Models to be considered:
 - Phenomenological Type-I seesaw model
 - SM fields + two or more ν_R
 - Minimal Left-Right Symmetric model
 - Introduces right-handed neutrinos and gauge fields
 - SM fields + ν_R , W_R
 - Type I+II seesaw model
 - SM fields + ν_R + scalar $SU(2)_L$ triplet
 - Phenomenological Type I+III seesaw model
 - SM fields + ν_R + fermionic $SU(2)_L$ triplet

- Consider several Simplified or Full models
 - Perform analysis of collider signatures within these models
 - Translate to the EFT and use it to describe $0 \nu \beta \beta$
 - Models to be considered:
 - Phenomenological Type-I seesaw model
 - SM fields + two or more ν_R
 - Minimal Left-Right Symmetric model
 - Introduces right-handed neutrinos and gauge fields
 - SM fields + ν_R , W_R
 - Type I+II seesaw model
 - SM fields + ν_R + scalar $SU(2)_L$ triplet
 - Phenomenological Type I+III seesaw model
 - SM fields + ν_R + fermionic $SU(2)_L$ triplet
 - Suggestions for other scenarios that we should consider including are welcome!